Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptomic and proteomic analysis reveals wall-associated and glucan-degrading proteins with potential roles in Phytophthora infestans sexual spore development.

Identifieur interne : 000629 ( Main/Exploration ); précédent : 000628; suivant : 000630

Transcriptomic and proteomic analysis reveals wall-associated and glucan-degrading proteins with potential roles in Phytophthora infestans sexual spore development.

Auteurs : Xiaofan Niu [États-Unis] ; Audrey M V. Ah-Fong [États-Unis] ; Lilianna A. Lopez [États-Unis] ; Howard S. Judelson [États-Unis]

Source :

RBID : pubmed:29897992

Descripteurs français

English descriptors

Abstract

Sexual reproduction remains an understudied feature of oomycete biology. To expand our knowledge of this process, we used RNA-seq and quantitative proteomics to examine matings in Phytophthora infestans. Exhibiting significant changes in mRNA abundance in three matings between different A1 and A2 strains compared to nonmating controls were 1170 genes, most being mating-induced. Rising by >10-fold in at least one cross were 455 genes, and 182 in all three crosses. Most genes had elevated expression in a self-fertile strain. Many mating-induced genes were associated with cell wall biosynthesis, which may relate to forming the thick-walled sexual spore (oospore). Several gene families were induced during mating including one encoding histidine, serine, and tyrosine-rich putative wall proteins, and another encoding prolyl hydroxylases which may strengthen the extracellular matrix. The sizes of these families vary >10-fold between Phytophthora species and one exhibits concerted evolution, highlighting two features of genome dynamics within the genus. Proteomic analyses of mature oospores and nonmating hyphae using isobaric tags for quantification identified 835 shared proteins, with 5% showing >2-fold changes in abundance between the tissues. Enriched in oospores were β-glucanases potentially involved in digesting the oospore wall during germination. Despite being dormant, oospores contained a mostly normal complement of proteins required for core cellular functions. The RNA-seq data generated here and in prior studies were used to identify new housekeeping controls for gene expression studies that are more stable than existing normalization standards. We also observed >2-fold variation in the fraction of polyA+ RNA between life stages, which should be considered when quantifying transcripts and may also be relevant to understanding translational control during development.

DOI: 10.1371/journal.pone.0198186
PubMed: 29897992
PubMed Central: PMC5999078


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptomic and proteomic analysis reveals wall-associated and glucan-degrading proteins with potential roles in Phytophthora infestans sexual spore development.</title>
<author>
<name sortKey="Niu, Xiaofan" sort="Niu, Xiaofan" uniqKey="Niu X" first="Xiaofan" last="Niu">Xiaofan Niu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ah Fong, Audrey M V" sort="Ah Fong, Audrey M V" uniqKey="Ah Fong A" first="Audrey M V" last="Ah-Fong">Audrey M V. Ah-Fong</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lopez, Lilianna A" sort="Lopez, Lilianna A" uniqKey="Lopez L" first="Lilianna A" last="Lopez">Lilianna A. Lopez</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Judelson, Howard S" sort="Judelson, Howard S" uniqKey="Judelson H" first="Howard S" last="Judelson">Howard S. Judelson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29897992</idno>
<idno type="pmid">29897992</idno>
<idno type="doi">10.1371/journal.pone.0198186</idno>
<idno type="pmc">PMC5999078</idno>
<idno type="wicri:Area/Main/Corpus">000741</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000741</idno>
<idno type="wicri:Area/Main/Curation">000741</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000741</idno>
<idno type="wicri:Area/Main/Exploration">000741</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptomic and proteomic analysis reveals wall-associated and glucan-degrading proteins with potential roles in Phytophthora infestans sexual spore development.</title>
<author>
<name sortKey="Niu, Xiaofan" sort="Niu, Xiaofan" uniqKey="Niu X" first="Xiaofan" last="Niu">Xiaofan Niu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ah Fong, Audrey M V" sort="Ah Fong, Audrey M V" uniqKey="Ah Fong A" first="Audrey M V" last="Ah-Fong">Audrey M V. Ah-Fong</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lopez, Lilianna A" sort="Lopez, Lilianna A" uniqKey="Lopez L" first="Lilianna A" last="Lopez">Lilianna A. Lopez</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Judelson, Howard S" sort="Judelson, Howard S" uniqKey="Judelson H" first="Howard S" last="Judelson">Howard S. Judelson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbohydrate Metabolism (genetics)</term>
<term>Cell Wall (genetics)</term>
<term>Cell Wall (metabolism)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Developmental (MeSH)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Genes, Mating Type, Fungal (genetics)</term>
<term>Glucans (metabolism)</term>
<term>Glycoside Hydrolases (genetics)</term>
<term>Glycoside Hydrolases (metabolism)</term>
<term>Phytophthora infestans (physiology)</term>
<term>Proteome (analysis)</term>
<term>Proteomics (MeSH)</term>
<term>Reproduction (MeSH)</term>
<term>Spores (genetics)</term>
<term>Spores (growth & development)</term>
<term>Spores (metabolism)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Glucanes (métabolisme)</term>
<term>Glycosidases (génétique)</term>
<term>Glycosidases (métabolisme)</term>
<term>Gènes fongiques du type conjugant (génétique)</term>
<term>Métabolisme glucidique (génétique)</term>
<term>Paroi cellulaire (génétique)</term>
<term>Paroi cellulaire (métabolisme)</term>
<term>Phytophthora infestans (physiologie)</term>
<term>Protéome (analyse)</term>
<term>Protéomique (MeSH)</term>
<term>Reproduction (MeSH)</term>
<term>Régulation de l'expression des gènes au cours du développement (MeSH)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Spores (croissance et développement)</term>
<term>Spores (génétique)</term>
<term>Spores (métabolisme)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glycoside Hydrolases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glucans</term>
<term>Glycoside Hydrolases</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Protéome</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Spores</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Carbohydrate Metabolism</term>
<term>Cell Wall</term>
<term>Genes, Mating Type, Fungal</term>
<term>Spores</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Spores</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glycosidases</term>
<term>Gènes fongiques du type conjugant</term>
<term>Métabolisme glucidique</term>
<term>Paroi cellulaire</term>
<term>Spores</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Wall</term>
<term>Spores</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glucanes</term>
<term>Glycosidases</term>
<term>Paroi cellulaire</term>
<term>Spores</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Phytophthora infestans</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Phytophthora infestans</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Developmental</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Proteomics</term>
<term>Reproduction</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Protéomique</term>
<term>Reproduction</term>
<term>Régulation de l'expression des gènes au cours du développement</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Sexual reproduction remains an understudied feature of oomycete biology. To expand our knowledge of this process, we used RNA-seq and quantitative proteomics to examine matings in Phytophthora infestans. Exhibiting significant changes in mRNA abundance in three matings between different A1 and A2 strains compared to nonmating controls were 1170 genes, most being mating-induced. Rising by >10-fold in at least one cross were 455 genes, and 182 in all three crosses. Most genes had elevated expression in a self-fertile strain. Many mating-induced genes were associated with cell wall biosynthesis, which may relate to forming the thick-walled sexual spore (oospore). Several gene families were induced during mating including one encoding histidine, serine, and tyrosine-rich putative wall proteins, and another encoding prolyl hydroxylases which may strengthen the extracellular matrix. The sizes of these families vary >10-fold between Phytophthora species and one exhibits concerted evolution, highlighting two features of genome dynamics within the genus. Proteomic analyses of mature oospores and nonmating hyphae using isobaric tags for quantification identified 835 shared proteins, with 5% showing >2-fold changes in abundance between the tissues. Enriched in oospores were β-glucanases potentially involved in digesting the oospore wall during germination. Despite being dormant, oospores contained a mostly normal complement of proteins required for core cellular functions. The RNA-seq data generated here and in prior studies were used to identify new housekeeping controls for gene expression studies that are more stable than existing normalization standards. We also observed >2-fold variation in the fraction of polyA+ RNA between life stages, which should be considered when quantifying transcripts and may also be relevant to understanding translational control during development.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29897992</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>01</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptomic and proteomic analysis reveals wall-associated and glucan-degrading proteins with potential roles in Phytophthora infestans sexual spore development.</ArticleTitle>
<Pagination>
<MedlinePgn>e0198186</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0198186</ELocationID>
<Abstract>
<AbstractText>Sexual reproduction remains an understudied feature of oomycete biology. To expand our knowledge of this process, we used RNA-seq and quantitative proteomics to examine matings in Phytophthora infestans. Exhibiting significant changes in mRNA abundance in three matings between different A1 and A2 strains compared to nonmating controls were 1170 genes, most being mating-induced. Rising by >10-fold in at least one cross were 455 genes, and 182 in all three crosses. Most genes had elevated expression in a self-fertile strain. Many mating-induced genes were associated with cell wall biosynthesis, which may relate to forming the thick-walled sexual spore (oospore). Several gene families were induced during mating including one encoding histidine, serine, and tyrosine-rich putative wall proteins, and another encoding prolyl hydroxylases which may strengthen the extracellular matrix. The sizes of these families vary >10-fold between Phytophthora species and one exhibits concerted evolution, highlighting two features of genome dynamics within the genus. Proteomic analyses of mature oospores and nonmating hyphae using isobaric tags for quantification identified 835 shared proteins, with 5% showing >2-fold changes in abundance between the tissues. Enriched in oospores were β-glucanases potentially involved in digesting the oospore wall during germination. Despite being dormant, oospores contained a mostly normal complement of proteins required for core cellular functions. The RNA-seq data generated here and in prior studies were used to identify new housekeeping controls for gene expression studies that are more stable than existing normalization standards. We also observed >2-fold variation in the fraction of polyA+ RNA between life stages, which should be considered when quantifying transcripts and may also be relevant to understanding translational control during development.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Niu</LastName>
<ForeName>Xiaofan</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ah-Fong</LastName>
<ForeName>Audrey M V</ForeName>
<Initials>AMV</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lopez</LastName>
<ForeName>Lilianna A</ForeName>
<Initials>LA</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Judelson</LastName>
<ForeName>Howard S</ForeName>
<Initials>HS</Initials>
<Identifier Source="ORCID">0000-0001-7865-6235</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>06</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005936">Glucans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.-</RegistryNumber>
<NameOfSubstance UI="D006026">Glycoside Hydrolases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D050260" MajorTopicYN="N">Carbohydrate Metabolism</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002473" MajorTopicYN="N">Cell Wall</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018507" MajorTopicYN="N">Gene Expression Regulation, Developmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049770" MajorTopicYN="N">Genes, Mating Type, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005936" MajorTopicYN="N">Glucans</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006026" MajorTopicYN="N">Glycoside Hydrolases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055750" MajorTopicYN="N">Phytophthora infestans</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040901" MajorTopicYN="N">Proteomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012098" MajorTopicYN="N">Reproduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013170" MajorTopicYN="N">Spores</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>12</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>05</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>6</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>6</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>1</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29897992</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0198186</ArticleId>
<ArticleId IdType="pii">PONE-D-17-45268</ArticleId>
<ArticleId IdType="pmc">PMC5999078</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>RNA Biol. 2017 Nov 2;14 (11):1445-1456</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28318367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2017 Dec;24(12 ):1057-1063</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29106412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Jun 9;12 (6):e0177591</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28598995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2007 Feb;7(3):340-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17177251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2015 Dec;35:57-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26451981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2015 Sep;82:108-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26159511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Feb 15;26(4):576-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20031975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 1;26(1):139-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19910308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2012 May;61(3):539-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22357727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2016 May 5;62(3):462-471</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27153541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2002 Jun 18;3(7):RESEARCH0034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12184808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Zool A Comp Exp Biol. 2003 Jun 1;297(2):105-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12945747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(4):953-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17446895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2011 Sep;11(18):3651-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21751368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:171-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Aug;45(4):1057-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12180924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Psychol Gen. 2013 May;142(2):573-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22774788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2006 Jun;43(6):430-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16531084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2013 Jan;97(2):461-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23179622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jul;40(Web Server issue):W553-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22600740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2007 Aug;44(8):726-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17215149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2017 Oct 10;18(1):764</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29017458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(3):R25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20196867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosoma. 2008 Feb;117(1):51-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17909832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 May 13;9(5):e97089</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24823911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Feb 09;8:142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28232841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Apr;78(2):328-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24547750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2004 Mar;26(6):509-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15127793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2014 Jun;31(6):1625-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24694831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Dec;212(4):888-895</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27582271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2013 Mar;117(3):163-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23537873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Aug 21;290(34):20712-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26152730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9722-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23716661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Persoonia. 2009 Jun;22:1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20198133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Mol Biol. 2006 Oct 06;7:33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17026756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2015 Jan;16(1):61-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24889742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 May;78(3):424-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24547885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 Dec 9;12 (12 ):e1006097</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27936244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2016 Jul 15;30(14 ):1671-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27445395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2015 Apr;14(4):1113-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25670805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2017 Feb 23;18(1):198</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28228125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2004 Aug 1;64(15):5245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15289330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>R Soc Open Sci. 2015 Sep 30;2(9):150402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26473061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:281-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2005 Jan;3(1):47-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15608699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Jun 12;20(9):1464-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14962934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2013 Jan;38(1):3-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23200187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Aug;14(4):407-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21641854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem Biophys Methods. 2000 Nov 20;46(1-2):69-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11086195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2010 May;59(3):307-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2011 Jul 24;7(9):591-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21785427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2006 Feb;275(2):169-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16322999</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Niu, Xiaofan" sort="Niu, Xiaofan" uniqKey="Niu X" first="Xiaofan" last="Niu">Xiaofan Niu</name>
</region>
<name sortKey="Ah Fong, Audrey M V" sort="Ah Fong, Audrey M V" uniqKey="Ah Fong A" first="Audrey M V" last="Ah-Fong">Audrey M V. Ah-Fong</name>
<name sortKey="Judelson, Howard S" sort="Judelson, Howard S" uniqKey="Judelson H" first="Howard S" last="Judelson">Howard S. Judelson</name>
<name sortKey="Lopez, Lilianna A" sort="Lopez, Lilianna A" uniqKey="Lopez L" first="Lilianna A" last="Lopez">Lilianna A. Lopez</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000629 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000629 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29897992
   |texte=   Transcriptomic and proteomic analysis reveals wall-associated and glucan-degrading proteins with potential roles in Phytophthora infestans sexual spore development.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29897992" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024